Increasing Statistical Power in **Breast Cancer Clinical Trials**

The recently reported decline in breast cancer mortality in the United States and United Kingdom has been attributed to multiple factors, including the increased use of screening mammography, adjuvant chemotherapy and endocrine therapy with tamoxifen. These advances are directly attributable to practice standards that have been shaped by data from randomized clinical trials. The human impact of these reductions in breast cancer mortality has led to larger cooperative studies with the statistical power to detect modest, but important, improvements in outcomes. A fascinating footnote is the recently reported ATAC adjuvant trial that has about 10 times as many patients as initial adjuvant studies launched in the 1970s.

HISTORICAL PERSPECTIVE

"Arguably one of the most important advances during the last 50 years has been the introduction of prospectively randomized controlled trials to clinical medicine. Such trials provide information about the natural history of a disease and evaluate the worth of a particular therapy. Moreover, they allow for testing of biological hypotheses and, thus, provide a mechanism whereby the scientific method can be applied to clinical problem-solving. By replacing anecdotal information (which has influenced therapeutic decision-making in the past) with more credible and substantive data, clinical trials play a major role in transforming the practice of medicine from an art to a science. As a vital component of the "research chain," clinical trials are an essential link between the laboratory and the clinic, providing means for determining whether the use of laboratory findings in the treatment of patients is justified. Without trials, much of the scientific information currently being reported could not be evaluated for its therapeutic worth."

SELECT KEY RANDOMIZED TRIALS OF ADJUVANT SYSTEMIC

NUMBER OF PATIENTS

948	Christie	Ovarian ablation v C	189	→ 10
958	NSABP B-01	Thiotepa v P	826	
961	NSABP B-03	Ovarian ablation v C	184	
972	NSABP B-05	L-PAM v P	380	
973	INT Milan-7205	12 CMF v C	391	
975	NSABP B-07	L-PAM 6mg v L-PAM 4mg+5-FU	741	
975	INT Milan-7502	12 v 6 CMF	434	
975	CALGB 7581	CMFVPr v CMF v CMF+MER	906	
976	NSABP B-08	$L-PAM+5-FU \vee L-PAM+5-FU+MTX$	737	
976	Christie	TAM v C	588	
976	Stockholm B 76G1-2	TAM+XRT v TAM+CMF v XRT v CMF	442	
977	Danish 77b pre	12C v 12CMF v Levam v C	1,212	
977	NATO	TAM v C	1,285	
977	NSABP B-09	$L-PAM+5-FU \vee L-PAM+5-FU+TAM$	1,891	
977	NSABP B-10	L-PAM+5-FU v L-PAM+5-FU+C.parvum	265	
978	GUN Naples	TAM v C	308	
978	Scottish	TAM v C TAM v TAM > recurrence	1,323	
978	ECOG 5177	CMF v CMFPr v CMFPr+TAM	662	
978	ECOG 6177	CMFPr v CMFPr+TAM v C	265	
978	ECOG 1178 post	TAM v P	181	
980	CRC 2	TAM V F TAM V CTX V TAM+CTX V C	1,768	
981	NSABP B-11	$L-PAM+5-FU \vee L-PAM+5-FU+DOX$	707	
981	NSABP B-12	$L-PAM+5-FU+TAM \pm DOX$	1,106	
981	NSABP B-12 NSABP B-13	$MTX \rightarrow 5-FU + LV v C$	760	
982	NSABP B-15 NSABP B-14	TAM v P	2,892	
982	Danish 82b pre	CMF v CMF+XRT	1,571	
982	Danish 82c post	TAM v TAM+XRT	1,242	
982	ECOG 4181 post	TAM 5 v 1 year	633	
982	ECOG 5181 pre	TAM 5 v 1 year $AC \times AC + 2CME \times 6CME (+ P)$	470	
984	NSABP B-15	AC v AC+3CMF v 6CMF $(+R)$	2,338	
984	NSABP B-16	TAM v L-PAM+5-FU+A+TAM v 3AC+TAM	1,296	
985	CALGB 8541	CAF(High/Low/Standard) \rightarrow XRT or TAM	1,549	
987		GOS v TAM v GOS+TAM v C	2,710	
988	NSABP B-18	$S \rightarrow AC \vee AC \rightarrow S$	1,523	
988	NSABP B-19	$M \rightarrow F + LV \vee CMF$	1,577	
988	NSABP B-20	TAM v M \rightarrow F+TAM v CMF+TAM	2,363	
989	SWOG 8814/INT 0100	TAM v FAC + concur or seq TAM	1,558	
989	SWOG 8897/INT 0102	CMF v CAF v CMF \rightarrow TAM	4,406	
989	ECOG 5188/INT 0101	FAC v FAC+GOS v FAC+GOS+TAM	1,537	
989	NSABP B-21	XRT+P v XRT+TAM v TAM	1,009	
989	NSABP B-22	AC v A+CTX intensified v AC intensified	2,305	0.20
991	aTTom	TAM x 5 more years v Stop Tam after 2 years		0-20,
991	NSABP B-23	$CMF+TAM \ v \ CMF+P \ v \ AC+TAM \ v \ AC+P$	2,008	
992	NSABP B-25	[AC (1200 x4 v 2400x2 v 2400x4)]+G-CSF	2,548	
993	CALGB 9344/INT 0148	$CA(60/75/90) \rightarrow T v C$	3,170	20
995	ATLAS	Tam x 5 more years v Stop Tam	2 4 1 1	20
995	NSABP B-27	$AC \rightarrow S \lor AC \rightarrow T \rightarrow S \lor AC \rightarrow S \rightarrow T$	2,411	
995	NSABP B-28	AC+TAM v AC+TAM \rightarrow T	3,060	
996	ATAC	Anastrozole v TAM v Anastrozole + TAM		366
997	BCIRG-001	TAC v FAC	1,491	
997	CALGB 9741	Seq v Comb [ACT v ACT+G-CSF]	1,400	
998	CALGB 49805	Letrozole v P	4,800	
999	NSABP B-30	$AC \rightarrow T v AT v ACT$	4,000	
2000	CAN-NCIC-MA21	FEC v EF/G-CSF T v AC→T	1,500	
2000	BCIRG-005	TAC v AC \rightarrow T	3,130	
2000	NCCTG-N9831	$AC \rightarrow T \vee AC \rightarrow T \rightarrow H \vee AC \rightarrow TH \rightarrow H$	3,000	
2001	NSABP B-33	Exemestane v P	3,000	
2001	NSABP B-34	Clodronate v P	2,400	
2001	BCIRG-006	AC→T v AC→TH v TCH	3,150	
2002	CALGB 40101	AC x 4 v AC x 6 v T x 12 v T x 18	4,646	

—Bernard Fisher, MD News from the Commission on Cancer of the American College of Surgeons 1991;2(2).

TRIALS AND CLINICAL DECISIONS

"The randomised controlled trial has become the gold standard for evidence-based medicine; through the unbiased comparison of competing treatments it is possible to accurately quantify the cost-benefits and harm of individual treatments. This allows clinicians to offer patients an informed choice and provides the data on which purchasing authorities can make financial decisions. We, of course, subscribe to this view but also recognize this as a gross over-simplification of the power of the randomised controlled trial. The randomised controlled trial is the expression of deductive science in clinical medicine. Not only is it the most powerful tool we have for subjecting therapeutic hypotheses to the hazard of refutation, but also the biological fallout from such trials should allow clinical scientists to refine biological hypotheses. Trials of treatments for breast cancer have, at least twice, contributed substantially to a paradigm shift in our understanding of the disease."

SELECT PUBLICATIONS

Collins R et al. Avoidance of large biases and large random errors in the assessment of moderate treatment effects: The need for systematic overviews. Stat Med 1987;6:245-250.

Ellis PM et al. Randomized clinical trials in oncology: Understanding and attitudes predict willingness to participate. J Člin Oncol 2001;19:3554-3561.

Giuliano AR et al. Participation of minorities in cancer research: The influence of structural, cultural and linguistic factors. Ann Epidemiol 2000;10(8 Suppl):S22-34.

Hutchins LF et al. Underrepresentation of patients 65 years of age or older in cancer-treatment trials. N Engl J Med 1999;341:2061-7.

Lara PN et al. Prospective evaluation of cancer clinical trial accrual patterns: Identifying potential barriers to enrollment. J Clin Oncol 2001;19:1728-1733.

Siminoff LA et al. Factors that predict the referral of breast cancer patients onto clinical trials by their surgeons and medical oncologists. J Clin Oncol 2000;18:1203-1211.

—Michael Baum, ChM, FRCS; Joan Houghton, BSc Br Med J 1999;319:568-571.

INTERNATIONAL META-ANALYSIS

There are thousands of randomized trials in the world, which will lead to "zigs and zags" in the data. And, the "zags" are probably the ones that are going to be the most noteworthy and the most emphasized in meetings, because they look odd. So if you take lots of trials and then pick out the ones where the results look out of line with the other ones, then you're quite likely to have something that is misleading. You've got to systematically bring together all the evidence in the world — look at it irrespective of what the individual study shows see what the grand total looks like, and then you've got something reliable. We've seen too many trial results that prove to be evanescent. But if you put all of the trials together, you get reliable knowledge. If you don't, you don't.

-Richard Peto, FRS

Copyright © 2002 NL Communications, Inc. All rights reserved. Poster information is for educational purposes only and not to be used in patient care. Please see full prescribing information and protocols.